

PA-003-113002

Seat No.

M. Sc. (Electronics) (Sem. III) (CBCS) Examination May / June - 2018

Paper - 10: Control System Analysis

Faculty Code: 003 Subject Code: 113002

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

- 1 Answer the following questions in brief: (any seven) 14
 - (1) Find inverse Laplace transform of $F(S) = \frac{(s+3)}{s(s+1)(s+2)}$
 - (2) What is open-loop control system?
 - (3) What is damping factor?
 - (4) Find x(t) for x'' + 3x' + 2x = 0 where x(0) = a and x'(0) = b.
 - (5) Explain briefly conditionally stable system?
 - (6) Find Laplace transform of $\cos\left(4t + \frac{\pi}{4}\right)$
 - (7) Describe Proportional control mode in brief.
 - (8) Differentiate between controlled variable and manipulated variable.
 - (9) Reduce the block-diagram to minimum:

(10) Define a $1^{\rm st}$ order system with help of appropriate examples.

- 2 Attempt any two of the following questions: 14 (each 7 marks)
 - (1) Enlist and explain rules for deriving Root locus for a positive feedback system.
 - (2) Describe Electric Furnace Control System in depth.
 - (3) Write a detailed note on Liquid-Level control system.
- **3** Answer the following questions:
 - (1) What is Routh's stability criterion? Explain with example.
 - (2) For 2nd order system with step input, derive 7 equations for rise time, peak time and maximum percentage overshoot. Consider the system to be underdamped.

OR

- **3** Answer the following questions:
 - (1) For the following transfer function derive values of rise time, peak time, maximum percentage overshoot and settling time. Consider a unit step input is applied to the system with $\zeta = 0.6$ and $\omega_n = 5rad$ / sec.

$$\frac{C(S)}{R(S)} = \frac{{\omega_n}^2}{s^2 + \zeta \, \omega_n s + \omega_n 2}$$

(2) For the PID controller circuit using op-amp derive 7 the transfer equation and coefficients K_p, K_i and K_d .

- 4 Answer the following questions:
 - (1) Write a detailed note on industrial controllers.

7

(2) Plot root-locus curve for following system. Where, *Ka* varies from 0 to infinity so as K.

- 5 Answer any **two** of the following questions: 14 (each 7 marks)
 - (1) Derive the mathematical model of a thermal system.

 The system comprises of a heater and a mixer in an insulated tank. In the tank a cold liquid is allowed and hot liquid is flown out of the tank.
 - (2) For the following polynomial equation determine the range of K such that the system remains stable. $s^3 + 2s^2 + 6 = 0$
 - (3) Mention rules for block diagram reduction and explain each.
 - (4) Write a 'detailed note on effects of integral and derivative control action on system performance.